2-Arachidonoylglycerol effects in cytotrophoblasts: metabolic enzymes expression and apoptosis in BeWo cells

Author:

Costa M A,Fonseca B M,Keating E,Teixeira N A,Correia-da-Silva G

Abstract

The major endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a member of the endocannabinoid system (ECS) that participates in cell proliferation and apoptosis, important events for the homoeostasis of biological systems. The formation of placenta is one of the most important stages of pregnancy and its development requires highly regulated proliferation, differentiation and apoptosis of trophoblasts. Anomalies in these processes are associated with gestational pathologies. In this work, we aimed to study the involvement of 2-AG in cytotrophoblast cell turnover. We found that 2-AG biosynthetic (diacylglycerol lipase A) and degradative (monoacylglycerol lipase) enzymes are expressed in human cytotrophoblasts and in BeWo cells. We also found that 2-AG induces a decrease in cell viability in a time- and concentration-dependent manner and exerts antiproliferative effects. The loss of cell viability induced by a 48-h treatment with 2-AG (10 μM) was accompanied by chromatin fragmentation and condensation, morphological features of apoptosis. Additionally, 2-AG induced an increase in caspase 3/7 and 9 activities, a loss of mitochondrial membrane potential (Δψm) and an increase in reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation, suggesting the activation of the mitochondrial pathway. Moreover, whereas Δψm loss and ROS/RNS generation were significantly attenuated by the antagonists of both the cannabinoid receptors 1 and 2 (CB1 and CB2), the increase in caspase 3/7 and 9 activities and loss of cell viability were reversed only by the antagonist of CB2 receptor; the blockage of the eCB membrane transporter and the depletion of cholesterol failed to reverse the effects of 2-AG. Therefore, this work supports the importance of cannabinoid signalling during cytotrophoblast cell turnover and that its deregulation may be responsible for altered placental development and poor pregnancy outcomes.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3