Glycosaminoglycans increase levels of free and bioactive IGF-I in vitro

Author:

Møller Anne Vestergård,Jørgensen Søren Peter,Chen Jian-Wen,Larnkjær Anni,Ledet Thomas,Flyvbjerg Allan,Frystyk Jan

Abstract

Background: It is unclear how IGFs become separated from their IGF-binding proteins (IGFBPs) in vivo. However, the IGFBPs possess binding sites for glycosaminoglycans (GAGs) and interaction with GAGs alters IGFBP ligand affinity. Accordingly, GAGs may control IGF bioavailability. To test this hypothesis, we investigated the effect of GAGs on serum levels of free and bioactive IGF-I, total IGF-I, and IGFBPs in vitro. Methods: Serum was incubated with increasing concentrations of six different GAGs (heparin, tinzaparin (Innohep®), dermatan sulfate, heparan sulfate, non-anticoagulant (nac) heparin, and nac low-molecular weight heparin). To investigate for reversibility, heparin was co-incubated with protamine sulfate (PS). Finally, the effect of heparin was studied in serum from pregnant and post partum women, normal subjects and patients with type 1 diabetes. Results: All GAGs increased free IGF-I in a dose-dependent manner (P < 0.0001), whereas total IGF-I and IGFBP levels remained unchanged. However, the potency of the GAGs differed significantly (P < 0.0001) and did not relate to their anti-coagulating activity. The effect of heparin on free IGF-I was fully reversed by PS. Heparin increased free and bioactive IGF-I in all tested sera (P < 0.0001), but the increase was most pronounced in samples from pregnant women (P < 0.0001). Conclusion: All tested GAGs stimulated the release of free and bioactive IGF-I in several types of serum, most likely by reversible interaction with the IGFBPs. The effect was most pronounced in pregnancy sera, which are characterized by extensive IGFBP-3 proteolysis. Our findings support the view that GAGs localized in the vessel wall and attached to the extracellular matrix control IGF-I tissue accessibility and bioactivity.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3