Deficient melanocortin-4 receptor causes abnormal reproductive neuroendocrine profile in female mice

Author:

Chen Xiaolin,Huang Lili,Tan Hwee Y,Li Hongzhuo,Wan Ying,Cowley Michael,Veldhuis Johannes D,Chen Chen

Abstract

Deletion of the melanocortin-4-receptor (Mc4r) gene in mice causes hyperphagia, followed by hyperinsulinemia, obesity and progressive infertility. Evidence shows that the number of developed corpora lutea is reduced in obese MC4R-knockout (MC4R KO) female mice, but the mechanism is unclear. The effect of hyperphagia and obesity by MC4R KO on pulsatile luteinizing hormone (LH) secretion and ovulation remains unknown. In MC4R KO mice and wild-type littermates (WT LM) during the diestrus period throughout different ages, we examined and monitored their metabolic status, pulsatile LH profiles, follicular morphology and the number of corpora lutea. MC4R KO mice were hyperphagic, obese, hyperglycemic, hyperinsulinemic and demonstrated insulin resistance and hepatic steatosis. Irregular estrous cycles and significant changes in the LH secretion profiles were observed in sexually matured 16- to 28-week MC4R KO mice, without any difference in testosterone levels. In addition, MC4R KO mice at 16 weeks of age had significantly fewer corpora lutea than same age WT LM mice. The ovary examinations of MC4R KO mice at 28 weeks of age showed predominantly antral and preovulatory follicles with no corpora lutea. These findings were consistent with the decrease in total, pulsatile, mass and basal LH releases in MC4R KO mice. The characteristics of hormone profiles in obese MC4R KO mice indicate that MC4R plays an important role in regulating LH release, ovulation and reproductive ability probably via hyperphagia-induced obesity. Further study of correlation between metabolic and reproductive regulatory hormones is warranted to dissect the pathological mechanism underlying obesity-induced infertility.Free Chinese abstract: A Chinese translation of this abstract is freely available athttp://www.reproduction-online.org/content/153/3/267/suppl/DC1.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3