A novel embryo culture media supplement that improves pregnancy rates in mice

Author:

Highet A R,Bianco-Miotto T,Pringle K G,Peura A,Bent S,Zhang J,Nottle M B,Thompson J G,Roberts C T

Abstract

The preimplantation embryoinvivois exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture mediain vitro. The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects ofin vitroculture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3