Molecular cues to the anti-implantation effect of nano-puerarin in rats

Author:

Saraswat Ghungroo,Guha Rajdeep,Mondal Kalyani,Saha Piyali,Banerjee Sayani,Chakraborty Prarthana,Konar Aditya,Kabir Syed N

Abstract

AbstractPuerarin, a selective oestrogen receptor modulator, intercepts implantation in rats, albeit at unacceptably higher doses. We developed poly lactic-co-glycolic acid-encapsulated nano-puerarin (PN) and mapped the molecular pathway underlying its anti-implantation effects. Smooth-surfaced and spherical PN having a mean diameter of ∼147nm was obtained with good yield, efficient encapsulation, and optimum drug loading. In culture, PN slowly and steadily released puerarin, which was readily taken up by the decidual cells. PN exerted a dose-dependent anti-implantation effect. As marked by attenuated expression of stromal cell desmin, alkaline phosphatase, IGFBP1, and decidual prolactin-related protein, the anti-implantation effect of PN seemed secondary to compromised decidualization. Usingin vivo(pregnant and pseudopregnant rats) andin vitro(endometrial stromal cell culture) treatment models, we document that PN enforced inhibition of uterine expression ofHbegfandHoxa10and their downstream signalling molecules, Cyclin D3 (CCND3)/CDK4. PN also efficiently ablated theIhh-Nr2f2-Bmp2signalling pathway and invited the loss of uterine potential for decidualization. There was a dose-dependent up-regulation of RHOA and its effector protein kinase, ROCK1, leading to the promotion of MLC phosphorylation and actin–myosin interaction. PN also down-regulated the stromal cell activation of ERK½ and expression of MMP9. These effects acting together stabilized the stroma and inhibited the stromal cell migration. Central to this array of events was the adversely altered endometrial expression of oestrogen receptor subtypes and repression of progesterone receptor that indulged endless proliferation of luminal epithelia and distorted the precisely choreographed stroma–epithelia crosstalk. Thus, PN dismantles the endometrial bed preparation and prevents implantation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3