Altered retinoid signaling compromises decidualization in human endometriotic stromal cells

Author:

Pavone Mary Ellen,Malpani Saurabh,Dyson Matthew,Bulun Serdar E

Abstract

Decidualization alters multiple molecular pathways in endometrium to permit successful embryo implantation. We have reported that paracrine factors, including retinoids, secreted from progesterone-treated endometrial stromal cells, act on nearby epithelial cells to induce the estradiol metabolizing enzyme HSD17B2. This same induction is not seen in endometriotic stromal cells. We have also shown significant differences in retinoid uptake, metabolism and action in endometriotic tissue and stromal cells compared to normal endometrium. Here, we characterize retinoid signaling during decidualization in these cells. Endometrial and endometriotic cells were isolated, cultured and incubated and decidualized. Genes involved in retinoid metabolism and trafficking were examined using RT-PCR and Western blotting. Prolactin, a decidualization marker, was also examined. We found that both endometrial and endometriotic stromal cells express all intracellular proteins involved in retinoid uptake and metabolism. Decidualization significantly reduced the expression of the genes responsible for retinoid uptake and shuttling to the nucleus. However, expression of CRBP1, an intracellular carrier protein for retinol, increased, as did RBP4, a carrier protein for retinol in the blood, which can function in a paracrine manner. Secreted RBP4 was detected in the media from decidualized endometrial cells but not from endometriotic cells. We believe that retinoid trafficking in endometrial stromal cells during decidualization may shift to favor paracrine rather than intracrine signaling, which may enhance signaling to the adjacent epithelium. There is blunting of this signaling in endometriotic cells. These alterations in retinoid signaling may help explain the decidualization defects and deficient estradiol inactivation (via HSD17B2) seen in endometriosis.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3