Role of PDK4 in insulin signaling pathway in periadrenal adipose tissue of pheochromocytoma patients

Author:

Wu Chunyan1,Zhang Huijian2,Lin Xiaochun1,Zeng Yanmei1,Zhang Yudan1,Ma Xiaoqin1,Xue Yaoming1,Guan Meiping1

Affiliation:

1. 1Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China

2. 2Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China

Abstract

Studies have shown that pheochromocytoma (PHEO) is associated with glucose intolerance and decreased insulin sensitivity. In adipocytes, pyruvate dehydrogenase kinase 4 (PDK4) is involved in glucose uptake. However, very little is known about the role of PDK4 in the insulin signaling pathway in the adipose tissue of PHEO patients. We analyzed the expression of adipokines, oxidative stress-related genes, PDK4, phosphorylated AMPK (pAMPK) and phosphorylated IRS1 (pIRS1) in the periadrenal adipose tissue (peri-A) of patients with PHEO and non-functioning adrenal adenoma (NFA). We also investigated the effects of epinephrine on PDK4, pAMPK and pIRS1 in human stromal vascular fraction (SVF) cells, mouse 3T3-L1 preadipocytes and brown preadipocytes. PHEO patients had higher mRNA levels of PGC1α, C/EBPα, C/EBPβ, COXII and AP2 and lower mRNA levels of PPARγ in their peri-A than NFA patients. Decreased pAMPK and increased PDK4 and pIRS1 were observed in the peri-A of PHEO patients. PHEO patients also had significantly higher NOX4 protein expression and lower Nrf2 and HO-1 protein expression in their peri-A than NFA patients. In vitro, epinephrine treatment upregulated PDK4 expression, inhibited AMPK phosphorylation and enhanced IRS1 phosphorylation. The knockdown of PDK4 by siRNA upregulated pAMPK and downregulated pIRS1. In conclusion, PDK4 may play an essential role in hypercatecholamine-induced insulin resistance in the periadrenal adipose tissues of PHEO patients.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3