Development of improved SRC-3 inhibitors as breast cancer therapeutic agents

Author:

Qin Li1,Chen Jianwei2,Lu Dong2,Jain Prashi1,Yu Yang1,Cardenas David1,Peng Xiaohui1,Yu Xiaobin1,Xu Jianming1,Wang Jin2,O’Malley Bert W1,Lonard David M1

Affiliation:

1. 1Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA

2. 2Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA

Abstract

Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in its progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes, which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial–mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high-throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs are synthesized that incorporate the addition of F atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5–50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress the growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells, respectively, SI-10 and SI-12 effectively inhibited the progression of breast cancer lung metastasis. These results demonstrate that SI-10 and SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3