Impact of oxidative stress on male and female germ cells: implications for fertility

Author:

Aitken R John12

Affiliation:

1. 1Priority Research Centre in Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia

2. 2Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia

Abstract

Male and female germ lines are vulnerable to oxidative stress. In spermatozoa, such stress triggers a lipid peroxidation cascade that culminates in the generation of electrophilic lipid aldehydes that bind to DNA and a raft of proteins involved in the delivery of functionally competent cells. One set of targets for these aldehydes are the proteins of the mitochondrial electron transport chain. When this interaction occurs, mitochondrial ROS generation is enhanced leading to the sustained generation of oxidative damage in a self-perpetuating cycle. Such damage affects all aspects of sperm function including motility, sperm-egg recognition, acrosomal exocytosis and sperm-oocyte fusion. Oxidative stress in the male germ line also attacks the integrity of sperm DNA with potential impacts on the developmental capacity of embryos and the health and wellbeing of the offspring. Potential pathways of reactive oxygen species (ROS) generation in male germ cells could involve enhanced lipoxygenase activity, activation of NADPH oxidase and/or electron leakage from mitochondria. Similarly, in the female germ line, both the induction of oocyte senescence following ovulation and the deterioration of oocyte quality with maternal age appear to involve the generation of oxidative damage. In this case, the mitochondria appear to be a particularly important source of ROS compromising the viability and fertilizability of the oocyte and interfering with the normal segregation of chromosomes during meiosis. In light of these considerations, antioxidants should have some role to play in the preservation of reproductive function in both men and women; however, we still await appropriate trials to test this hypothesis.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3