Abstract
Dyslipidemia is a common metabolic disorder in diabetes. Nitric oxide (NO) production from endothelium plays the primary role in endothelium-mediated vascular relaxation and other endothelial functions. Therefore, we investigated the effects of elevated free fatty acids (FFA) on the stimulation of NO production by phospholipase C (PLC)-activating receptor agonists (potent physiological endothelium-dependent vasodilators) and defined the possible alterations of signaling pathways implicated in this scenario. Exposure of bovine aortic endothelial cells (BAECs) to high concentrations of a mixture of fatty acids (oleate and palmitate) for 5 or 10 days significantly reduced NO production evoked by receptor agonists (bradykinin or ATP) in a time- and dose-dependent manner. Such defects were not associated with alterations of either endothelial NO synthase mass or inositol phospholipid contents but were probably due to reduced elevations of intracellular free Ca2+levels ([Ca2+]i) under these conditions. Exposure of BAECs to FFA significantly attenuated agonist-induced [Ca2+]iincreases by up to 54% in a dose- and time-dependent manner. Moreover, bradykinin receptor affinity on the cell surface was significantly decreased by high concentrations of FFA. The morphology of BAECs was altered after 10-day culture with high FFA. Co-culture with protein kinase C (PKC) inhibitors or antioxidants was able to reverse the impairments of receptor agonist-induced NO production and [Ca2+]irises as well as the alteration of receptor affinity in BAECs exposed to FFA. These data indicate that chronic exposure to high FFA reduces NO generation in endothelial cells probably by impairing PLC-mediated Ca2+signaling pathway through activation of PKC and excess generation of oxidants.
Subject
Endocrinology,Molecular Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献