Novel nomogram for predicting the 3-year incidence risk of osteoporosis in a Chinese male population

Author:

Mao Yaqian12,Xu Lizhen1,Xue Ting1,Liang Jixing2,Lin Wei2,Wen Junping2,Huang Huibin2,Li Liantao2,Chen Gang123

Affiliation:

1. 1Shengli Clinical Medical College of Fujian Medical University, Fujian, China

2. 2Department of Endocrinology, Fujian Provincial Hospital, Fujian, China

3. 3Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fujian, China

Abstract

Objective To establish a rapid, cost-effective, accurate, and acceptable osteoporosis (OP) screening model for the Chinese male population (age ≥ 40 years) based on data mining technology. Materials and methods This was a 3-year retrospective cohort study, which belonged to the sub-cohort of the Chinese Reaction Study. The research period was from March 2011 to December 2014. A total of 1834 subjects who did not have OP at the baseline and completed a 3-year follow-up were included in this study. All subjects underwent quantitative ultrasound examinations for calcaneus at the baseline and follow-ups that lasted for 3 years. We utilized the least absolute shrinkage and selection operator (LASSO) regression model to select feature variables. The characteristic variables selected in the LASSO regression were analyzed by multivariable logistic regression (MLR) to construct the predictive model. This predictive model was displayed through a nomogram. We used the receiver operating characteristic (ROC) curve, C-index, calibration curve, and clinical decision curve analysis (DCA) to evaluate model performance and the bootstrapping validation to internally validate the model. Results The predictive factors included in the prediction model were age, neck circumference, waist-to-height ratio, BMI, triglyceride, impaired fasting glucose, dyslipidemia, osteopenia, smoking history, and strenuous exercise. The area under the ROC (AUC) curve of the risk nomogram was 0.882 (95% CI, 0.858–0.907), exhibiting good predictive ability and performance. The C-index for the risk nomogram was 0.882 in the prediction model, which presented good refinement. In addition, the nomogram calibration curve indicated that the prediction model was consistent. The DCA showed that when the threshold probability was between 1 and 100%, the nomogram had a good clinical application value. More importantly, the internally verified C-index of the nomogram was still very high, at 0.870. Conclusions This novel nomogram can effectively predict the 3-year incidence risk of OP in the male population. It also helps clinicians to identify groups at high risk of OP early and formulate personalized intervention measures.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3