Author:
Yilmaz M Bertan,Wolfe Andrew,Zhao Hong,Brooks David C,Bulun Serdar E
Abstract
Aromatase catalyzes the conversion of C19steroids to estrogens. Aromatase and progesterone, both of which function at different steps of steroidogenesis, are crucial for the sexually dimorphic development of the fetal brain and the regulation of gonadotropin secretion and sexual interest in adults. The aromatase gene (Cyp19a1) is selectively expressed in distinct neurons of the mouse hypothalamus through a distal brain-specific promoter, I.f, located ∼40 kb upstream of the coding region. However, the regulation of aromatase expression in the brain is not well understood. In this study, we investigated a short feedback effect of progesterone analogues on aromatase mRNA expression and enzyme activity in estrogen receptor α (Esr1)-positive or -negative mouse embryonic hypothalamic neuronal cell lines that express aromatase via promoter I.f. In a hypothalamic neuronal cell line that highly expresses aromatase, progesterone receptor (Pgr), and Esr1, a progesterone agonist, R5020, inhibited aromatase mRNA level and enzyme activity. The inhibitory effect of R5020 was reversed by its antagonist, RU486. Deletion mutants of promoter I.f suggested that inhibition of aromatase expression by progesterone is conferred by the nt −1000/−500 region, and R5020 enhanced binding of Pgr to the nt −800/−600 region of promoter I.f. Small interfering RNA knockdown ofPgreliminated progesterone-dependent inhibition of aromatase mRNA and enzyme activity. Taken together, progesterone enhances recruitment of Pgr to specific regions of the promoter I.f ofCyp19a1and regulates aromatase expression in hypothalamic neurons.
Subject
Endocrinology,Molecular Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献