Differentiation of the bovine dominant follicle from the cohort upregulates mRNA expression for new tissue development genes

Author:

Mihm M,Baker P J,Fleming L M,Monteiro A M,O'Shaughnessy P J

Abstract

This study was designed to identify genes that regulate the transition from FSH- to LH-dependent development in the bovine dominant follicle (DF). Serial analysis of gene expression (SAGE) was used to compare the transcriptome of granulosa cells isolated from the most oestrogenic growing cohort follicle (COH), the newly selected DF and its largest subordinate follicle (SF) which is destined for atresia. Follicle diameter, follicular fluid oestradiol (E) and E:progesterone ratio confirmed follicle identity. Results show that there are 93 transcript species differentially expressed in DF granulosa cells, but only 8 of these encode proteins known to be involved in DF development. Most characterised transcripts upregulated in the DF are from tissue development genes that regulate cell differentiation, proliferation, apoptosis, signalling and tissue remodelling. Semiquantitative real-time PCR analysis confirmed seven genes with upregulated (P≤0.05) mRNA expression in DF compared with both COH and SF granulosa cells. Thus, the new genes identified by SAGE and real-time PCR, which show enhanced mRNA expression in the DF, may regulate proliferation (cyclin D2;CCND2), prevention of apoptosis or DNA damage (growth arrest and DNA damage-inducible, β;GADD45B), RNA synthesis (splicing factor, arginine/serine rich 9;SFRS9) and unknown processes associated with enhanced steroidogenesis (ovary-specific acidic protein; DQ004742) in granulosa cells of DF at the onset of LH-dependent development. Further studies are required to show whether the expression of identified genes is dysregulated when abnormalities occur during DF selection or subsequent development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3