Author:
Kageyama Shun-ichiro,Liu Honglin,Kaneko Naoto,Ooga Masatoshi,Nagata Masao,Aoki Fugaku
Abstract
During oocyte growth, chromatin structure is altered globally and gene expression is silenced. To investigate the involvement of epigenetic modifications in the regulation of these phenomena, changes in global DNA methylation and in various histone modifications, i.e. acetylation of H3K9, H3K18, H4K5, and H4K12, and methylation of H3K4 and H3K9, were examined during the growth of mouse oocytes. Immunocytochemical analysis revealed that the signal intensities of all these modifications increased during growth and that fully grown, germinal vesicle (GV)-stage oocytes showed the most modifications. Since acetylation of most of the lysine residues on histones and methylation of H3K4 are associated with active gene expression, the increased levels of these modifications do not seem to be associated with gene silencing in GV-stage oocytes. Given that there are two types of GV-stage oocytes with different chromatin configurations and transcriptional activities, the epigenetic modification statuses of these two types were compared. The levels of all the epigenetic modifications examined were higher in the SN(surrounded nucleolus)-type oocytes, in which highly condensed chromatin is concentrated in the area around the nucleolus and gene expression is silenced than in the NSN(not surrounded nucleolus)-type oocytes, in which less-condensed chromatin does not surround the nucleolus and gene expression is active. In addition, the expression levels of various enzymes that catalyze histone modifications were shown by RT-PCR to increase with oocyte growth. Taken together, the results show that all of the epigenetic modifications increased in a concerted manner during oocyte growth, and suggest that these increases are not associated with gene expression.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献