Estrogen-induced inhibition of spermatogenesis in zebrafish is largely reversed by androgen

Author:

de Castro Assis Luiz Henrique1,de Nóbrega Rafael Henrique2,Gómez-González Nuria Esther3,Bogerd Jan1,Schulz Rüdiger Winfried1

Affiliation:

1. 1Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands

2. 2Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil

3. 3Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain

Abstract

The hormonal regulation of spermatogenesis involves both gonadotropins and steroid hormones. Long-term in vivo exposure of adult zebrafish to estrogen impaired spermatogenesis associated with an androgen insufficiency, possibly induced by inhibiting gonadotropin release. Using this experimental model, we investigated if androgen treatment could enhance spermatogenesis, while maintaining the inhibition of gonadotropin release through continued estrogen exposure. Moreover, we also exposed animals to androgen alone, in order to examine androgen effects in the absence of estrogen-induced gonadotropin inhibition. Estrogen exposure depleted type B spermatogonia, meiotic and postmeiotic germ cells from the adult testis, but promoted the proliferation of type A undifferentiated spermatogonia, which accumulated in the testis. This change in germ cell composition was accompanied by reduced mRNA levels of those growth factors (e.g. insl3 and igf3) expressed by testicular somatic cells and known to stimulate spermatogonial differentiation in zebrafish. Additional androgen (11-ketoandrostenedione, which is converted to 11-ketotestosterone) treatment in vivo reversed most of the effects of estrogen exposure on spermatogenesis while insl3 and igf3 transcript levels remained suppressed. When androgen treatment was given alone, it promoted the production of haploid cells at the expense of spermatogonia, and increased transcript levels of some growth factor and hormone receptor genes, but not those of insl3 or igf3. We conclude that estrogen exposure efficiently inhibits spermatogenesis because it induces androgen insufficiency and suppresses gonadotropin-regulated growth factors known to stimulate germ cell differentiation. Moreover, our results suggest that androgens and the growth factors Insl3 and Igf3 stimulate spermatogenesis via independent pathways.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3