Assessing RET/PTC in thyroid nodule fine-needle aspirates: the FISH point of view

Author:

Caria Paola,Dettori Tinuccia,Frau Daniela V,Borghero Angela,Cappai Antonello,Riola Alessia,Lai Maria L,Boi Francesco,Calò Piergiorgio,Nicolosi Angelo,Mariotti Stefano,Vanni Roberta

Abstract

RET/PTC rearrangement and BRAFV600E mutation are the two prevalent molecular alterations associated with papillary thyroid carcinoma (PTC), and their identification is increasingly being used as an adjunct to cytology in diagnosing PTC. However, there are caveats associated with the use of the molecular approach in fine-needle aspiration (FNA), particularly for RET/PTC, that should be taken into consideration. It has been claimed that a clonal or sporadic presence of this abnormality in follicular cells can distinguish between malignant and benign nodules. Nevertheless, the most commonly used PCR-based techniques lack the capacity to quantify the number of abnormal cells. Because fluorescence in situ hybridization (FISH) is the most sensitive method for detecting gene rearrangement in a single cell, we compared results from FISH and conventional RT-PCR obtained in FNA of a large cohort of consecutive patients with suspicious nodules and investigated the feasibility of setting a FISH-FNA threshold capable of distinguishing non-clonal from clonal molecular events. For this purpose, a home brew break-apart probe, able to recognize the physical breakage of RET, was designed. While a ≥3% FISH signal for broken RET was sufficient to distinguish nodules with abnormal follicular cells, only samples with a ≥6.8% break-apart FISH signal also exhibited positive RT-PCR results. On histological analysis, all nodules meeting the ≥6.8% threshold proved to be malignant. These data corroborate the power of FISH when compared with RT-PCR in quantifying the presence of RET/PTC in FNA and validate the RT-PCR efficiency in detecting clonal RET/PTC alterations.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3