Author:
Laurent-Cadoret V,Guillou F,Combarnous Y
Abstract
This study was undertaken to investigate, in freshly isolated rat Sertoli cells, the physiological function of the type I and type II cyclic adenosine monophosphate (cAMP)-dependent protein kinase isozymes in tissue-type plasminogen activator secretion and the regulation of this cAMP process by follicle-stimulating hormone (FSH). Follicle-stimulating hormone-induced tissue-type plasminogen activator secretion depends upon intracellular cAMP levels. The changes in cAMP amounts required to activate maximally the tissue-type plasminogen activator secretion are extremely small, a cAMP threshold having to be reached for triggering the tissue-type plasminogen activator output. Intact Sertoli cells were incubated with combinations of cAMP analogs specific for each cAMP-dependent protein kinase type and complementary in their cAMP binding site on the cAMP-dependent protein kinase regulatory subunits: 8-aminohexylamino-cAMP = type 1, site 1; 8-thiomethyl-cAMP = type II, site 1 and N6-benzoyl-cAMP = types I/II, site 2. This allowed us to activate selectively each cAMP-dependent protein kinase type in a synergistic manner and then to evaluate their respective influence in the specific tissue-type plasminogen activator response. We establish that both of the cAMP-dependent protein kinase types are present and functional; the activity of the type I isozyme is preponderant (60%) in the cAMP-dependent tissue-type plasminogen activator secretion. Likewise, when these cAMP analogs were coupled with endogenously generated cAMP by FSH or forskolin, both of the cAMP-dependent protein kinase types were involved in the tissue-type plasminogen activator production. However, only tissue-type plasminogen activator secretion induced by FSH is mediated predominantly by the type I cAMP-dependent protein kinase, although the type II isozyme sustains an appreciable physiological role in the transmission pathway. We suggest some differences in the pattern of action between FSH and forskolin in Sertoli cells.
Subject
Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献