Diminished hepatic triiodothyronine production in Gunn rats

Author:

Saltzman J. R.,Clark D. W.,Utiger R. D.

Abstract

Abstract. The liver is a major site of conversion of thyroxine (T4) to the more active thyroid hormone 3,5,3'-triiodothyronine (T3). Hepatic T4 to T3 conversion is altered by a variety of pathological processes and pharmacological agents. We studied T4 to T3 conversion in glucuronyl transferase deficient homozygous Gunn rats because they have a hepatic enzyme abnormality which leads to hyperbilirubinaemia, and also because they have been reported to have alterations in thyroid hormone metabolism. An in vitro incubation system employing the 10 000 × g supernatant of liver homogenate was used, and T3 production was measured by radioimmunoassay. Experiments were done using substrate concentrations ranging from 0.56 to 20 μm, tissue protein in concentrations ranging from 0.625 to 20 mg and incubation times of 15 to 60 min. T3 production by liver homogenates from homozygous Gunn rats in these studies ranged from 29 to 70% of that produced by liver homogenates from phenotypically normal heterozygous Gunn rats. The deficit in hepatic T3 production by homozygous rats could not be overcome by increasing cofactor concentrations. After ultracentrifugation at 100 000 μ g, T4-5'-deiodinase activity was found primarily in the 100 000 × g sediment fraction. Homogygous rat liver 100 000 × g sediment T3 production was 55% of that of the heterozygous rat liver 100 000 × g sediment. Liver cytosol from both homozygous and heterozygous rats inhibited microsomal T4-5'-deiodinase activity similarly. Addition of unconjugated bilirubin to liver homogenates resulted in reduction of T3 production in livers from both homozygous and heterozygous rats. Thus the diminished capacity for hepatic conversion of T4 to T3 in homozygous Gunn rats may be due to inhibition of T4-5'-deiodinase activity by high endogenous levels of unconjugated bilirubin.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3