A comparison of preparations of highly purified human pituitary luteinizing hormone: differences in the luteinizing hormone potencies as determined by in vivo bioassays, in vitro bioassay and immunoassay

Author:

Storring P. L.,Zaidi A. A.,Mistry Y. G.,Lindberg Monica,Stenning Bridget E.,Diczfalusy E.

Abstract

Abstract. The LH potencies of 12 preparations of highly purified human pituitary LH, from 6 laboratories, were estimated by 2 in vivo bioassays and an in vitro bioassay in terms of the International Reference Preparation of Human Pituitary Gonadotrophins (FSH and LH) for Bioassay (coded 69/104); and by immunoassay in terms of the International Reference Preparation of Human Pituitary Luteinizing Hormone for Immunoassay (IRP; coded 68/40). The LH potencies varied between preparations, including the IRP (68/40), from 864 to 5740 IU/mg by seminal vesicle weight gain (SVW) assay; from 1510 to 11500 IU/mg by ovarian ascorbate depletion (OAAD) assay; from 4490 to 14500 IU/mg by in vitro (testicular interstitial-cell testosterone production) bioassay; and from 2030 to 9180 IU/mg by immunoassay. Estimates of protein content were based on the assumption that the absorbance of LH at 280 nm (A 1% 1 cm) was 6.0. The LH potency of most preparations was highest by in vitro bioassay and lowest by SVW assay. The correlation between activities determined by SVW and OAAD assays was more marked than that between estimates by OAAD assay and in vitro bioassay; there was no correlation between estimates by SVW assay and in vitro bioassay. The slopes of the log dose-response curves of preparations in the OAAD assay were positively correlated with their potencies by OAAD assay and negatively correlated with the slopes of their log dose-response curves in the SVW assay. The qualitative differences between preparations are considered to be a reflection of the heterogeneity of LH and of its modification by different purification procedures. The present data, together with the different patterns of heterogeneity found in some of these preparations by isoelectric focusing in a separate study, suggest that the more basic molecular forms of LH, which are preferentially purified during the isolation of LH free from FSH and TSH, have shorter plasma survival times than the more acidic forms. The LH immunoreactivities of all preparations were significantly correlated with their potencies estimated by each of the in vivo bioassays but not with those estimated by in vitro bioassay. The ratios of in vitro bioactivity (in terms of IRP (68/40)): immunoreactivity varied between preparations from 0.53–1.5. The FSH content of each preparation was less than 2% (w/w) by bioassay and immunoassay. Most preparations were more potent by in vitro bioassay than by in vivo bioassay, which contrasted with, and complemented, findings for purified FSH preparations. This indicated that, as in the case of LH, the more basic molecular species of FSH are associated with lower ratios of in vivo: in vitro bioactivity than are the more acidic species. This study provides the most comprehensive comparison available of the activities of purified preparations of LH isolated from frozen and acetone-dried human pituitary glands in different experienced laboratories. These data are needed for selecting material for an international reference preparation of LH for immunoassay on the basis of high LH potency by in vivo bioassay, recommended by the WHO as a criterion for the identity of the hormone and for its freedom from contaminants. The consequences of the heterogeneity of LH are considered for the purification of the reference material and for the suitability of the latter for the various types of specimens which require LH assays.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3