Author:
Kraiem Z.,Sadeh O.,Sobel E.
Abstract
Abstract. We have established a relatively simple and sensitive system for measuring T3 as well as cAMP secretion using cryopreserved human thyroid cells in culture. We defined optimal culture conditions and characterized the system. T3 secretion from human thyrocytes (only 1 × 105 cells/well) could be stimulated in a time- and dose-dependent fashion by both TSH (doses as low as 10 mU/l) and thyroid-stimulating immunoglobulin to levels 5- to 10-fold above baseline. The response to the thyroid stimulating agents was preserved for at least 3 weeks. Experiments with inhibitors of iodothyronine synthesis (propylthiouracil and methimazole) indicated that the bulk of the TSH-stimulated T3 secretion measured apparently derives from de novo iodothyronine biosynthesis rather than preformed T3. We utilized the system to investigate some aspects in the regulation of human thyrocyte T3 and cAMP secretion. Maximum stimulation of the thyroid hormone was achieved at TSH doses capable of evoking a further rise in levels of cAMP. A rise in cAMP accumulation was observed as early as 15 min following exposure to TSH, whereas it took 1–4 days to detect a significant increase in T3 secretion. Within 6 h of incubation, the bulk of TSH-stimulated intracellular cAMP was found released into the medium. l-methyl-3-isobutylxanthine (MIX) caused a dose-related decrease (beyond 0.1 mmol/l MIX) in TSH-stimulated T3 secretion which contrasted with a concomitant expected increase in cAMP accumulation. Hence, as also observed in adrenal and testicular tissue, xanthines at high concentration seem to exhibit a dual action: potentiation of cAMP accumulation by inhibiting phosphodiesterase activity and a concomitant reduction of hormone formation.
Subject
Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献