PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade

Author:

Rotfeld H,Hillman P,Ickowicz D,Breitbart H

Abstract

To enable fertilization, spermatozoa must undergo several biochemical processes in the female reproductive tract, collectively called capacitation. These processes involve protein kinase A (PKA)-dependent protein tyrosine phosphorylation including phosphatidylinositol-3-kinase (PI3K). It is not known how PKA, a serine/threonine (S/T) kinase, mediates tyrosine phosphorylation of proteins. We recently showed that inhibition of S/T phosphatase 1 (PP1) causes a significant increase in phospho-PI3K. In this study, we propose a mechanism by which PKA and PP1 mediate an increase in PI3K tyrosine phosphorylation and implicate calmodulin-dependent kinase II (CaMKII) in this process. Inhibition of sperm PP1 or PKC, stimulated CaMKII phosphorylation/activation, and inhibition of PKC enhanced PP1 phosphorylation/inactivation. Inhibition of CaMKII, using KN-93, caused significant reduction in phospho-PP1, indicating its activation. Moreover, KN-93 prevented the dephosphorylation/inactivation of PKC. We therefore suggest that CaMKII inhibits PKC, leading to PP1 inhibition and the reciprocal auto-activation of CaMKII. Thus, CaMKII can regulate its own activation by inhibiting the PKC/PP1 cascade. Inhibition of Src family kinases (SFK) caused significant inhibition of CaMKII and PP1 phosphorylation, suggesting that SFK activity results in PP1 inhibition and CaMKII activation. Activation of sperm PKA by 8Br-cAMP revealed an increase in phospho-CaMKII, which was inhibited by PKA inhibitor. Tyrosine phosphorylation of PI3K was stimulated by 8Br-cAMP and by PKC or PP1 inhibition and was abrogated by CaMKII inhibition. Furthermore, phosphorylation/activation of the tyrosine kinase Pyk2 was enhanced by PP1 inhibition, and this activation is blocked by CaMKII inhibition. Thus, PKA activates Src, which inhibits PP1, leading to CaMKII and Pyk2 activation, resulting in PI3K tyrosine phosphorylation/activation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3