Author:
Huang Xin,Hao Cuifang,Shen Xiaofang,Liu Xiaoyan,Shan Yinghua,Zhang Yuhua,Chen Lili
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss. In this microenvironment, the cross talk between an oocyte and the surrounding cumulus cells (CCs) is critical for achieving oocyte competence. The aim of our study was to investigate the gene expression profiles of CCs obtained from PCOS patients undergoing IVF cycles in terms of oocyte maturation by using human Genome U133 Plus 2.0 microarrays. A total of 59 genes were differentially expressed in two CC groups. Most of these genes were identified to be involved in one or more of the following pathways: receptor interactions, calcium signaling, metabolism and biosynthesis, focal adhesion, melanogenesis, leukocyte transendothelial migration, Wnt signaling, and type 2 diabetes mellitus. According to the different expression levels in the microarrays and their putative functions, six differentially expressed genes (LHCGR, ANGPTL1, TNIK, GRIN2A, SFRP4, and SOCS3) were selected and analyzed by quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Moreover, the molecular signatures (LHCGR, TNIK, and SOCS3) were associated with developmental potential from embryo to blastocyst stage and were proposed as biomarkers of embryo viability in PCOS patients. Our results may be clinically important as they offer a new potential strategy for competent oocyte/embryo selection in PCOS patients.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine