Polychlorinated dibenzo-p-dioxins, furans, and biphenyls (PCDDs/PCDFs and PCBs) in breast milk and early childhood growth and IGF1

Author:

Wohlfahrt-Veje Christine,Audouze Karine,Brunak Søren,Antignac Jean Philippe,le Bizec Bruno,Juul Anders,Skakkebæk Niels E,Main Katharina Maria

Abstract

Experimental studies have shown that dioxin-like chemicals may interfere with aspects of the endocrine system including growth. However, human background population studies are, however, scarce. We aimed to investigate whether early exposure of healthy infants to dioxin-like chemicals was associated with changes in early childhood growth and serum IGF1. In 418 maternal breast milk samples of Danish children (born 1997–2001) from a longitudinal cohort, we measured polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls (pg or ng/g lipid) and calculated total toxic equivalent (total TEQ). SDS and SDS changes over time (ΔSDS) were calculated for height, weight, BMI, and skinfold fat percentage at 0, 3, 18, and 36 months of age. Serum IGF1 was measured at 3 months. We adjusted for confounders using multivariate regression analysis. Estimates (in parentheses) correspond to a fivefold increase in total TEQ. TEQ levels in breast milk increased significantly with maternal age and fish consumption and decreased with maternal birth year, parity, and smoking. Total TEQ was associated with lower fat percentage (−0.45 s.d., CI: −0.89; −0.04), non-significantly with lower weight and length at 0 months, accelerated early height growth (increased ΔSDS) (ΔSDS 0–18 months: +0.77 s.d., CI: 0.34; 1.19) and early weight increase (ΔSDS 0–18: +0.52 s.d., CI: 0.03; 1.00), and increased IGF1 serum levels at 3 months (+13.9 ng/ml, CI: 2.3; 25.5). Environmental exposure to dioxin-like chemicals was associated with being skinny at birth and with higher infant levels of circulating IGF1 as well as accelerated early childhood growth (rapid catch-up growth).

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3