Alterations in egg white-related genes expression in response to hormonal stimulation

Author:

Lee Minkyeong1,Yang Changwon2,Song Gwonhwa2,Lim Whasun1

Affiliation:

1. 1Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea

2. 2Department of Biotechnology, Korea University, Seoul, Republic of Korea

Abstract

The reproductive tract in avian females is sensitive to hormonal regulation. Exogenous estrogen induces immature oviduct development to improve egg production after molting. In this process, regressed female reproductive tract is regenerated in response to the secretion of estrogen. However, there is limited knowledge on the physiological mechanisms underlying the regulation of the avian female reproductive system. In our previous study, results from microarray analysis revealed that the expression of genes encoding egg white proteins is affected during molting. Herein, we artificially induced the molting period in chickens through a zinc-containing diet. Subsequently, changes in the expression of genes encoding egg white proteins were confirmed in the oviduct tissue. The levels of MUC5B, ORM1, RTBDN, and TENP mRNA were significantly high in the oviduct, and the genes were repressed in the regression phase, whereas these were expressed in the recrudescence phase, particularly in the luminal epithelium and glandular epithelium of the oviduct, during molting. Moreover, we observed that gene expression was induced in the magnum, the site for the secretion of egg white components. Next, differences in expression levels of the four genes in normal and cancerous ovaries were compared. Collectively, results suggest that the four selected genes are expressed in the female chicken reproductive tract in response to hormonal regulation, and egg white protein-encoding genes may serve as modulators of the reproductive system in hens.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3