Rat postnatal prostate development is impaired by in vitro high-glucose environment

Author:

Cassimiro Isabella Silva1,Cruz Amanda Rodrigues1,Bosque Beatriz Pelegrini1,de Melo Gomes Laura Calazans1,Zanon Renata Graciele2,da Costa Silva Jéssica Regina3,Fujimura Patrícia Tieme3,Ueira-Vieira Carlos3,Ribeiro Daniele Lisboa1

Affiliation:

1. 1Department of Cell Biology, Histology and Embriology, Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, Minas Gerai, Brazil

2. 2Department of Anatomy, Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, Minas Gerai, Brazil

3. 3Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia, Minas Gerai, Brazil

Abstract

The prostate development has an important postnatal period where cell proliferation begins at the first days after birth and is related to gland growth and ramification. Any metabolic and/or hormonal changes occurring during the postnatal period can interfere with prostate branching. Hyperglycemia is a common condition in low-weight preterm babies at neonatal period and also a disorder found in the offspring of obese mothers. Thus, this study aimed to investigate the in vitro effects of a glucose-rich environment during prostate postnatal development. Wistar rats prostate were removed at birth and cultured for 1, 2 and 3 days in DMEM under normal (5.5 mM) or elevated (7 and 25 mM) glucose concentrations. Samples were processed for morphological analysis, PCNA and smooth muscle α-actin immunohistochemistry, evaluation of active caspase-3, ERK1/2 and Wnt5a gene expression. High glucose concentrations reduced the number of prostatic buds and proliferating cells. The natural increase in smooth muscle cells and collagen deposition observed in control prostates during the first 3 days of development was reduced by elevated glucose concentrations. The amount of active caspase-3 was higher in prostates incubated at 7 mM and TGF-β levels also increased sharply after both glucose concentrations. Additionally, high glucose environment decreased ERK 1/2 activation and increased Wnt5a expression. These data show that high levels of glucose during the first postnatal days affected prostate development by inhibiting cell proliferation which impairs bud branching and this was associated with anti-proliferative signals such as decreased ERK1/2 activation and increased Wnt5a expression.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3