Affiliation:
1. 1The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
2. 2Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
Abstract
This study aims to evaluate the deleterious effect of the mycotoxin aflatoxin B1 (AFB1) on bull spermatozoa and the carryver effect on the developing embryo. Proteomic analysis of AFB1-treated spermatozoa revealed differential expression of proteins associated with biological processes and cellular pathways that involved in spermatozoon function, fertilization competence and embryonic development. Therefore, we assume that factors delivered by the spermatozoa, regardless of DNA fragmentation, are also involved. To confirm this hypothesis, we have used the annexin V (AV) kit to separate the spermatozoa into apoptotic (AV+) and non-apoptotic (AV−) subpopulations which were found to correlate with high- and low DNA fragmentation, respectively. Fertilization with AV+ AFB1-treated spermatozoa, resulted in no blastocyst formation, whereas fertilization with AV− spermatozoa resulted in reduced cleavage rate and formation of genetically altered blastocysts (POU5F1 and SOX2). Microarray analysis of blastocysts derived from 10 µM AFB1-treated spermatozoa revealed differential expression of 345 genes that involved in cellular pathways such as embryo and placenta development, cell cycle, DNA repair and histone modification, and in signaling pathways, especially calcium signaling pathway. This is the first report on deleterious carrying over effects of AFB1 from the bovine spermatozoa to the formed embryo. Our findings suggest that aside from the damage caused by AFB1 to spermatozoa’s DNA integrity, additional damage mechanisms are involved.
Subject
Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献