The role of stem cells in uterine involution

Author:

Spooner Madelyn K1,Lenis Yasser Y12,Watson Rachel3,Jaimes Daniela4,Patterson Amanda L13

Affiliation:

1. 1Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA

2. 3Department of Animal Sciences, Faculty of Agricultural Sciences, National University of Colombia, Palmira, Colombia

3. 2Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, Missouri, USA

4. 4Faculty of Agricultural Sciences, University of Applied and Environmental Sciences U.D.C.A, Bogota, Colombia

Abstract

Uterine remodeling during pregnancy and repair postpartum are fundamental to the successful propagation of eutherian species. The most drastic remodeling occurs in species with invasively implanting embryos, including humans and mice. During embryo implantation, embryonic trophoblasts breach the epithelium, penetrating into the stroma. Stromal cell decidualization, which is critical for the establishment and maintenance of early pregnancy, occurs throughout the implantation site. Trophoblasts further invade into and remodel uterine spiral arteries, which is necessary for placental formation. The uterus increases in size up to 24-fold, which is largely attributed to myometrial expansion. Uterine changes that occur during pregnancy must then be resolved postpartum. Following parturition, the uterus repairs the remodeled tissue in the process of uterine involution. During involution, the majority of the endometrium is regenerated to replace the tissue that is shed postpartum. The myometrium returns to the pre-gravid state which is thought to occur through apoptosis and autophagy of smooth muscle cells. Although we understand the general process of postpartum uterine involution, the detailed mechanisms, particularly the role of putative stem cells, are poorly understood. This review discusses the evidence for the existence of epithelial, stromal and myometrial stem cells and their role in uterine involution. Gaps in knowledge and areas for future research are also considered. Studies of both postpartum and menstrual uterine repair, which likely involve similar mechanisms, are described under the broad definition of uterine involution. Although the primary focus of this review is human, mouse models are discussed to provide additional information.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3