Molecular interactions at the bovine embryo–endometrial epithelium interface

Author:

Sponchiado Mariana123,Marei Waleed F A14,Beemster Gerrit T S5,Bols Peter E J1,Binelli Mario23,Leroy Jo L M R1

Affiliation:

1. 1Department of Veterinary Sciences, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium

2. 2Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil

3. 3Department of Animal Sciences, University of Florida, Gainesville, Florida, USA

4. 4Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

5. 5Department of Biology, Laboratory for Integrated Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium

Abstract

In cattle, pre-implantation embryo development occurs within the confinement of the uterine lumen. Current understanding of the bi-lateral molecular interactions between embryo and endometrium that are required for a successful pregnancy is limited. We hypothesized that the nature and intensity of reciprocal embryo-endometrium interactions depend on the extent of their physical proximity. Bovine endometrial epithelial cells (bEECs) and morulae were co-cultured in juxtacrine (Contact+) or non-juxtacrine (Contact−) apposition. Co-culture with bEECs improved blastocyst rates on day 7.5, regardless of juxtaposition. Contact+ regulated transcription of 1797 endometrial genes vs only 230 in the Contact− group compared to their control (no embryos) counterparts. A subset of 50 overlapping differentially expressed genes (DEGs) defined embryo-induced effects on bEEC transcriptome irrespective of juxtaposition. Functional analysis revealed pathways associated with interferon signaling and prostanoid biosynthesis. A total of 175 genes displayed a graded expression level depending on Contact+ or Contact−. These genes were involved in interferon-related and antigen presentation pathways. Biological processes enriched exclusively in Contact+ included regulation of cell cycle and sex-steroid biosynthesis. We speculate that, in vivo, embryonic signals fine-tune the function of surrounding cells to ultimately maximize pregnancy success.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3