CXCL12 and its receptors regulate granulosa cell apoptosis in PCOS rats and human KGN tumor cells

Author:

Jin Ling12ORCID,Ren Liang3,Lu Jing4,Wen Xue12,Zhuang Siying12,Geng Ting12,Zhang Yuanzhen124

Affiliation:

1. 1Reproductive Medicine Center, Wuhan University Zhongnan Hospital, Wuhan, Hubei, People’s Republic of China

2. 2Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan University Zhongnan Hospital, Wuhan, Hubei, People’s Republic of China

3. 4Department of Reproductive Center, First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China

4. 3Department of Obstetrics and Gynecology, Wuhan University Zhongnan Hospital, Wuhan, Hubei, People’s Republic of China

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine disorder accompanied by chronic low-grade inflammation; its etiology is still undefined. This study investigated the expression of CXCL12, CXCR4, and CXCR7 in PCOS rats and their role in regulation of apoptosis. To accomplish this, we established an in vivo PCOS rat model and studied KGN cells (human ovarian granulosa cell line) in vitro. In PCOS rats, the ovarian expression of CXCL12, CXCR4, and CXCR7 was reduced, and the apoptosis rate of granulosa cells was increased, accompanied by decreased expression of BCL2 and increased expression of BAX and cleaved CASPASE3 (CASP3). We further showed that recombinant human CXCL12 treatment upregulated BCL2, downregulated BAX, and cleaved CASP3 in KGN cells to inhibit their apoptosis in a concentration-dependent manner; moreover, the effect of CXCL12 was weakened by CXCR4 antagonist AMD3100 and anti-CXCR7 neutralizing antibody. In conclusion, PCOS rats showed decreased CXCL12, CXCR4, and CXCR7 expression and increased apoptosis rate of ovarian granulosa cells. Further, in human KGN cells, CXCL12 regulated the expression of BAX, BCL2, and cleaved CASP3 to inhibit apoptosis through CXCR4- and CXCR7-mediated signal transmission. These findings may provide a theoretical and practical basis for illuminating the role of proinflammatory cytokines in the pathogenesis of PCOS.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3