Actions of thermal stress in two-cell bovine embryos: oxygen metabolism, glutathione and ATP content, and the time-course of development

Author:

Rivera Rocío Melissa,Dahlgren Gabriella M,de Castro e Paula Luiz Augusto,Kennedy Robert T,Hansen Peter J

Abstract

The mechanism by which heat shock disrupts development of the two-cell bovine embryo was examined. The reduction in the proportion of embryos that became blastocysts caused by heat shock was not exacerbated when embryos were cultured in air (20.95% O2) as compared with 5% O2. In addition, heat shock did not reduce embryonic content of glutathione, cause a significant alteration in oxygen consumption, or change embryonic ATP content. When embryos were heat-shocked at the two-cell stage and allowed to continue development until 72 h post insemination, heat-shocked embryos had fewer total nuclei and a higher percentage of them were condensed. Moreover, embryos became blocked in development at the eight-cell stage. The lack of effect of the oxygen environment on the survival of embryos exposed to heat shock, as well as the unchanged content of glutathione, suggest that free radical production is not a major cause for the inhibition in development caused by heat shock at the two-cell stage. In addition, heat shock appears to have no immediate effect on oxidative phosphorylation since no differences in ATP content were observed. Finally, the finding that heat shock causes a block to development at the eight-cell stage implies that previously reported mitochondrial damage caused by heat shock or other heat shock-induced alterations in cellular physiology render the embryo unable to proceed past the eight-cell stage.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3