Cell death induced by serum deprivation in luteal cells involves the intrinsic pathway of apoptosis

Author:

Goyeneche Alicia A,Harmon Jacquelyn M,Telleria Carlos M

Abstract

The corpus luteum is a transient endocrine gland specializing in the production of progesterone. The regression of the corpus luteum involves an abrupt decline in its capacity for producing progesterone followed by its structural involution, which is associated with apoptosis of the luteal cells. An in vitro experimental approach is needed to study the molecular mechanisms underlying hormonal regulation of luteal cell death under defined experimental conditions. In this study, we investigated simian virus-40-transformed luteal cells to determine whether they can be driven to apoptosis and, if so, to define the intracellular pathway involved. Luteal cells were cultured in the presence or absence of fetal bovine serum for 24 or 48 h. Under serum starvation conditions, the luteal cells underwent growth arrest accompanied by cell death as evaluated by dye exclusion, and confirmed by two-color fluorescence cell viability/cytotoxicity assay. We next studied whether serum starvation-induced death of luteal cells occurred by apoptosis. Morphologic features of apoptosis were observed in cells stained with hematoxylin after being subjected to serum starvation for 48 h. The apoptotic nature was further confirmed by in situ 3′-end labeling and fragmentation of genomic DNA. Apoptosis of serum-deprived luteal cells was dependent upon caspase activation. Serum starvation induced cleavage of poly (ADP-ribose) polymerase (PARP), suggesting that caspase-3 had been activated under the stress of withdrawal of growth factors. This was confirmed by cleavage of full-length procaspase-3. Finally, the fact that serum starvation promoted the cleavage of full-length procaspase-9 and the decrease in the expression of endogenous Bid, a BH-3-only proapoptotic protein of the Bcl-2 family, indicates that the intrinsic (i.e., mitochondrial) pathway of apoptosis was activated. In summary, we have characterized an in vitro experimental model of luteal cell death that can be utilized to evaluate the role of hormones in apoptosis of luteal cells under defined culture conditions, and to study the mechanism of luteal regression.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3