Apoptosis of bovine ovarian surface epithelial cells by Fas antigen/Fas ligand signaling

Author:

Margalit Kate A,Cowan Robert G,Harman Rebecca M,Quirk Susan M

Abstract

Ovarian surface epithelial cells (OSEs), a single layer of cells that cover the surface of the ovary, undergo turnover at the site of follicular rupture at ovulation. Greater than 90% of ovarian cancers arise from the OSEs. The objective of this study was to determine whether OSEs have the capacity to regulate their own demise through expression of Fas antigen (Fas) and Fas ligand (FasL) and activation of Fas-mediated apoptosis. In initial experiments, primary cultures of bovine OSEs responded to treatment with recombinant FasL by undergoing apoptosis. The percentage of cell death was not affected by the presence or absence of serum in the media or by co-treatment with interferon-γ, a treatment shown to potentiate Fas-mediated apoptosis in a number of cell types. Subsequent experiments tested the ability of stress-inducing drugs, anisomycin and daunorubicin, to promote apoptosis by stimulating an endogenous Fas–FasL pathway in OSEs. Treatment with FasL, anisomycin or daunorubicin induced cell death and this was suppressed by co-treatment with a peptide inhibitor of caspases, ZVAD. Treatment with anisomycin or daunorubicin in the presence of ZVAD increased expression of FasL mRNA and protein but did not alter expression of Fas mRNA or protein. Treatment of OSEs with a recombinant protein that blocks interaction of FasL with Fas (Fas:Fc) reduced apoptosis in response to anisomycin and daunorubicin, indicating that drug-induced apoptosis was mediated at least partially through endogenous Fas–FasL interactions. In summary, OSEs undergo apoptosis in response to stress-inducing drugs through activation of an endogenous Fas pathway.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3