Author:
McNatty K P,Moore L G,Hudson N L,Quirke L D,Lawrence S B,Reader K,Hanrahan J P,Smith P,Groome N P,Laitinen M,Ritvos O,Juengel J L
Abstract
Ovulation rate in mammals is determined by a complex exchange of hormonal signals between the pituitary gland and the ovary and by a localised exchange of hormones within ovarian follicles between the oocyte and its adjacent somatic cells. From examination of inherited patterns of ovulation rate in sheep, point mutations have been identified in two oocyte-expressed genes, BMP15 (GDF9B) and GDF9. Animals heterozygous for any of these mutations have higher ovulation rates (that is, + 0.8–3) than wild-type contemporaries, whereas those homozygous for each of these mutations are sterile with ovarian follicular development disrupted during the preantral growth stages. Both GDF9 and BMP15 proteins are present in follicular fluid, indicating that they are secreted products.In vitrostudies show that granulosa and/or cumulus cells are an important target for both growth factors. Multiple immunisations of sheep with BMP15 or GDF9 peptide protein conjugates show that both growth factors are essential for normal follicular growth and the maturation of preovulatory follicles. Short-term (that is, primary and booster) immunisation with a GDF9 or BMP15 peptide-protein conjugate has been shown to enhance ovulation rate and lamb production. In summary, recent studies of genetic mutations in sheep highlight the importance of oocyte-secreted factors in regulating ovulation rate, and these discoveries may help to explain why some mammals have a predisposition to produce two or more offspring rather than one.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献