Available human feeder cells for the maintenance of human embryonic stem cells

Author:

Lee Jung Bok,Song Ji Min,Lee Jeoung Eun,Park Jong Hyuk,Kim Sun Jong,Kang Soo Man,Kwon Ji Nie,Kim Moon Kyoo,Roh Sung Il,Yoon Hyun Soo

Abstract

Mouse embryonic fibroblasts (MEFs) have been previously used as feeder cells to support the growth of human embryonic stem cells (hESCs). In this study, human adult uterine endometrial cells (hUECs), human adult breast parenchymal cells (hBPCs) and embryonic fibroblasts (hEFs) were tested as feeder cells for supporting the growth of hESCs to prevent the possibility of contamination from animal feeder cells. Cultured hUECs, hBPCs and hEFs were mitotically inactivated and then plated. hESCs (Miz-hES1, NIH registered) initially established on mouse feeder layers were transferred onto each human feeder layer and split every 5 days. The morphology, expression of specific markers and differentiation capacity of hESCs adapted on each human feeder layer were examined. On hUEC, hBPC and hEF feeder layers, hESCs proliferated for more than 90, 50 and 80 passages respectively. Human feeder-based hESCs were positive for stage-specific embryonic antigen (SSEA)-3 and -4, and Apase; they also showed similar differentiation capacity to MEF-based hESCs, as assessed by the formation of teratomas and expression of tissue-specific markers. However, hESCs cultured on hUEC and hEF feeders were slightly thinner and flatter than MEF- or hBPC-based hESCs. Our results suggest that, like MEF feeder layers, human feeder layers can support the proliferation of hESCs without differentiation. Human feeder cells have the advantage of supporting more passages than when MEFs are used as feeder cells, because hESCs can be uniformly maintained in the undifferentiated stage until they pass through senescence. hESCs established and/or maintained under stable xeno-free culture conditions will be helpful to cell-based therapy.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3