Short photoperiod inhibition of growth in body mass and reproduction in ACI, BUF, and PVG inbred rats

Author:

Francisco Nicole R,Raymond Christen M,Heideman Paul D

Abstract

Laboratory rats have been generally considered non-photoresponsive, but strains of laboratory rats have been found to be variable for this trait. Young males of both the Fischer (F344) and Brown Norway strains (BN) suppress reproductive development, food intake and body mass in short winter photoperiod (short days (SD); 8 h light:16 h darkness), and food restriction interacts with SD to enhance the effect of SD alone. Conversely, young male Harlan Sprague Dawley outbred rats, along with other outbred laboratory rats tested, have little or no response to SD except when unmasked by food restriction or other treatments, and have generally been considered nonphotoperiodic. In order to assess how widespread this trait might be among rat strains, and to test for uncoupling of reproductive and nonreproductive responses, we tested 3 additional inbred strains, including ACI, PVG and BUF rats, for photoresponsiveness and for unmasking of photoperiodic responses by food restriction. Young males of all three inbred strains exhibited photoresponsiveness in testis mass (5–20% lower in SD), seminal vesicle mass (20–50% lower in SD), and body mass (5–10% lower in SD). Food restriction also suppressed reproduction, but there was little or no interaction with the effects of photoperiod. The results are consistent with the hypothesis that laboratory rats are genetically variable for photoperiodism, and that photoresponsiveness may be widespread among inbred rat strains, as all five inbred strains tested have shown photoperiodic responses. The results are particularly important because standard research protocols may unknowingly manipulate this pathway in rats, causing unsuspected variability among or within studies.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3