Regulation of apoptosis in the atresia of dominant bovine follicles of the first follicular wave following ovulation

Author:

Valdez Kelli E,Cuneo S Peder,Turzillo Adele M

Abstract

During atresia of bovine follicles, granulosa cells are lost through the controlled form of cell death, apoptosis. The purpose of this study was to characterize the regulation of apoptotic death of granulosa cells in dominant bovine follicles during the first wave of follicular development. Dominant follicles were collected from Holstein heifers on days 4, 6 or 8 of the first follicular wave (n= 5/day). Regulation of apoptosis in granulosa cells was examined by annexin V and propidium iodide staining; measurement of relative levels of mRNA encoding Bcl-2, Bcl-xL and Bax; and activity of caspase-3, -8 and -9. Steady-state levels of mRNA encoding four oxidative stress-response proteins were determined. Compared with day 4, the incidence of apoptotic and nonviable granulosa cells tended to increase on day 6, and numbers of nonviable cells were higher on day 8. The ratios of relative levels of mRNA encoding Bcl-2 to Bax and Bcl-xL to Bax were higher on day 6 than days 4 and 8. Activity of caspases-3 and -9 in granulosa cells did not change among the 3 days, while caspase-8 activity decreased on day 8 compared with days 4 and 6. Amounts of GSHPx, MnSOD and Cu/ZnSOD mRNA in granulosa cells were higher on day 8 than day 6. In theca interna, amounts of Cu/ZnSOD mRNA decreased between days 4 and 6. From the decreased production of estradiol and increased numbers of apoptotic and nonviable granulosa cells, we conclude that atresia of the dominant follicle is initiated between days 4 and 6 of the first follicular wave. However, apoptosis of granulosa cells does not appear to be initiated by changes in expression of oxidative stress-response proteins.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3