Are Src family kinases involved in cell cycle resumption in rat eggs?

Author:

Talmor-Cohen A,Tomashov-Matar R,Eliyahu E,Shapiro R,Shalgi R

Abstract

The earliest visible indications for the transition to embryos in mammalian eggs, known as egg activation, are cortical granules exocytosis (CGE) and resumption of meiosis (RM); these events are triggered by the fertilizing spermatozoon through a series of Ca2+transients. The pathways, within the egg, leading to the intracellular Ca2+release and to the downstream cellular events, are currently under intensive investigation. The involvement of Src family kinases (SFKs) in Ca2+release at fertilization is well supported in marine invertebrate eggs but not in mammalian eggs. In a previous study we have shown the expression and localization of Fyn, the first SFK member demonstrated in the mammalian egg. The purpose of the current study was to identify other common SFKs and resolve their function during activation of mammalian eggs. All three kinases examined: Fyn, c-Src and c-Yes are distributed throughout the egg cytoplasm. However, Fyn and c-Yes tend to concentrate at the egg cortex, though only Fyn is localized to the spindle as well. The different localizations of the various SFKs imply the possibility of their different functions within the egg. To examine whether SFKs participate in the signal transduction pathways during egg activation, we employed selective inhibitors of the SFKs activity ((PP2 and SU6656). The results demonstrate that RM, which is triggered by Ca2+elevation, is an SFK-dependent process, while CGE, triggered by either Ca2+elevation or protein kinase C (PKC), is not. The possible involvement of SFKs in the signal transduction pathways that lead from the sperm–egg fusion site downstream of the Ca2+release remains unclear.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3