Histone exchange activity and its correlation with histone acetylation status in porcine oocytes

Author:

Endo Tsutomu,Imai Aoi,Shimaoka Takuma,Kano Kiyoshi,Naito Kunihiko

Abstract

In mammalian oocytes, histone H3 and histone H4 (H4) in the chromatin are highly acetylated at the germinal vesicle (GV) stage, and become globally deacetylated after GV breakdown (GVBD). Although nuclear core histones can be exchanged by cytoplasmic free histones in somatic cells, it remains unknown whether this is also the case in mammalian oocytes. In this study, we examined the histone exchange activity in maturing porcine oocytes before and after GVBD, and investigated the correlations between this activity and both the acetylation profile of the H4 N-terminal tail and the global histone acetylation level in the chromatin. We injected Flag-tagged H4 (H4-Flag) mRNA into GV oocytes, and found that the Flag signal was localized to the chromatin. We next injected mRNAs of mutated H4-Flag, which lack all acetylation sites and the whole N-terminal tail, and found that the H4 N-terminal tail and its modification were not necessary for histone incorporation into chromatin. Despite the lack of acetylation sites, the mutated H4-Flag mRNA injection did not decrease the acetylation level on the chromatin, indicating that the histone exchange occurs partially in the GV chromatin. In contrast to GV oocytes, the Flag signal was not detected on the chromatin after the injection of H4-Flag protein into the second meiotic metaphase oocytes. These results suggest that histone exchange activity changes during meiotic maturation in porcine oocytes, and that the acetylation profile of the H4 N-terminal tail has no effect on histone incorporation into chromatin and does not affect the global level of histone acetylation in it.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3