Endoplasmic reticulum stress attenuation promotes bovine oocyte maturation in vitro

Author:

Khatun Hafiza123,Wada Yasuhiko13,Konno Toshihiro34,Tatemoto Hideki34,Yamanaka Ken-ichi13

Affiliation:

1. 1Faculty of Agriculture, Saga University, Saga, Japan

2. 2Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh

3. 3The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan

4. 4Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan

Abstract

We have previously reported that regulation of endoplasmic reticulum (ER) stress during in vitro culture acutely increases bovine embryo developmental rate and cryotolerance; these data indicate that ER stress is a critical factor reducing the quality of in vitro-produced embryos. In the current follow-up study, we examined whether ER stress attenuation during in vitro maturation influences meiotic maturation, oocyte quality, and subsequent embryonic development. Bovine cumulus oocyte complexes (COCs) derived from slaughterhouse ovaries were matured with or without tauroursodeoxycholic acid (TUDCA), a selective inhibitor of ER stress (0, 50, 100, and 200 µM) for 22 h followed by in vitro fertilization, and zygotes were cultured for 8 days. Of the different doses of TUDCA, 100 μM TUDCA significantly increased the maturation rate, and decreased reactive oxygen species in denuded oocytes, and appeared lower number of apoptotic cells in matured COCs. Subsequently, treatment of TUDCA (100 µM) decreased the localization and amount of GRP78/BIP protein level as well as ER stress (GRP78/BIP, PERK, IER1, ATF4, and XBP1) and apoptosis (CHOP and BAX)-related gene expression, while it increased the anti-apoptotic gene BCL2 level in matured COCs. Moreover, addition of TUDCA (100 µM) during IVM significantly improved the blastocyst formation rate (43.6 ± 1.8% vs 49.7 ± 1.3%) and decreased the number of apoptotic cells (7.7 ± 1.1% vs 5.03 ± 0.6%) in blastocysts. These findings suggest that the presence of ER stress during maturation impairs the developmental competence of bovine COCs and that this process can be reversed by TUDCA.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3