Progesterone-induced RNA Hand2os1 regulates decidualization in mice uteri

Author:

Jia Yanni12,Cai Rui12,Yu Tong12,Zhang Ruixue12,Liu Shouqin12,Guo XinYan12,Shang Chunmei12,Wang Aihua12,Jin Yaping12,Lin Pengfei12

Affiliation:

1. 1College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China

2. 2Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China

Abstract

Decidualization is a critical process for successful embryo implantation and subsequent placenta formation. The characterization and physiological function of lncRNA during decidualization remain largely unknown. In the present study, we conducted RNA-sequencing analysis to compare gene expression between decidua of days 6 and 8, and normal pregnant endometrium (day 4). A total of 2332 high-confidence putative lncRNA transcripts were expressed. Functional clustering analysis of cis and trans lncRNA targets showed that differentially expressed lncRNAs may regulate multiple gene ontology terms and pathways that have important functions in decidualization. Subsequent analyses using qRT-PCR validated that eight of all lncRNAs were differentially regulated in mice uteri during decidualization, both in vivo and in vitro. Furthermore, we showed that differentially expressed lncRNA of Hand2os1 was specifically detected in stromal cells on days 2 to 5 of pregnancy and was strongly upregulated in decidual cells on days 6–8 of pregnancy. Similarly, Hand2os1 expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. In uterine stromal cells, P4 was able to significantly upregulate the expression of Hand2os1, but upregulation was impeded by RU486, whereas E2 appeared to have no regulating effect on Hand2os1 expression. Concurrently, Hand2os1 significantly promoted the decidual process in vitro and dramatically increased decidualization markers Prl8a2 and Prl3c1. Our results provide a valuable catalog for better understanding of the functional roles of lncRNAs in pregnant mouse uteri, as it relates to decidualization.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3