Maternal modifiers of the infant gut microbiota: metabolic consequences

Author:

Mulligan Christopher M1,Friedman Jacob E1

Affiliation:

1. Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Abstract

Transmission of metabolic diseases from mother to child is multifactorial and includes genetic, epigenetic and environmental influences. Evidence in rodents, humans and non-human primates support the scientific premise that exposure to maternal obesity or high-fat diet during pregnancy creates a long-lasting metabolic signature on the infant innate immune system and the juvenile microbiota, which predisposes the offspring to obesity and metabolic diseases. In neonates, gastrointestinal microbes introduced through the mother are noted for their ability to serve as direct inducers/regulators of the infant immune system. Neonates have a limited capacity to initiate an immune response. Thus, disruption of microbial colonization during the early neonatal period results in disrupted postnatal immune responses that highlight the neonatal period as a critical developmental window. Although the mechanisms are poorly understood, increasing evidence suggests that maternal obesity or poor diet influences the development and modulation of the infant liver and other end organs through direct communication via the portal system, metabolite production, alterations in gut barrier integrity and the hematopoietic immune cell axis. This review will focus on how maternal obesity and dietary intake influence the composition of the infant gut microbiota and how an imbalance or maladaptation in the microbiota, including changes in early pioneering microbes, might contribute to the programming of offspring metabolism with special emphasis on mechanisms that promote chronic inflammation in the liver. Comprehension of these pathways and mechanisms will elucidate our understanding of developmental programming and may expand the avenue of opportunities for novel therapeutics.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3