Author:
Wewer Albrechtsen Nicolai J,Bak Monika J,Hartmann Bolette,Christensen Louise Wulff,Kuhre Rune E,Deacon Carolyn F,Holst Jens J
Abstract
To investigate the stability of glucagon-like peptide 1 (GLP-1) and glucagon in plasma under short- and long-term storage conditions. Pooled human plasma (n=20), to which a dipeptidyl peptidase 4 (DPP4) inhibitor and aprotinin were added, was spiked with synthetic GLP-1 (intact, 7–36NH2 as well as the primary metabolite, GLP-1 9–36NH2) or glucagon. Peptide recoveries were measured in samples kept for 1 and 3 h at room temperature or on ice, treated with various enzyme inhibitors, after up to three thawing–refreezing cycles, and after storage at −20 and −80 °C for up to 1 year. Recoveries were unaffected by freezing cycles or if plasma was stored on ice for up to 3 h, but were impaired when samples stood at RT for more than 1 h. Recovery of intact GLP-1 increased by addition of a DPP4 inhibitor (no ice), but was not further improved by neutral endopeptidase 24.11 inhibitor or an inhibitor cocktail. GLP-1, but not glucagon, was stable for at least 1 year. Surprisingly, the recovery of glucagon was reduced by almost 50% by freezing compared with immediate analysis, regardless of storage time. Plasma handling procedures can significantly influence results of subsequent hormone analysis. Our data support addition of DPP4 inhibitor for GLP-1 measurement as well as cooling on ice of both GLP-1 and glucagon. Freeze–thaw cycles did not significantly affect stability of GLP-1 or glucagon. Long-term storage may affect glucagon levels regardless of storage temperature and results should be interpreted with caution.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献