A model for chronic, intrahypothalamic thyroid hormone administration in rats

Author:

Zhang Z1,Bisschop P H1,Foppen E1,van Beeren H C1,Kalsbeek A12,Boelen A1,Fliers E1

Affiliation:

1. 1Department of Endocrinology and MetabolismAcademic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands

2. 2Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN), Amsterdam, Amsterdam, the Netherlands

Abstract

In addition to the direct effects of thyroid hormone (TH) on peripheral organs, recent work showed metabolic effects of TH on the liver and brown adipose tissue via neural pathways originating in the hypothalamic paraventricular and ventromedial nucleus (PVN and VMH). So far, these experiments focused on short-term administration of TH. The aim of this study is to develop a technique for chronic and nucleus-specific intrahypothalamic administration of the biologically active TH tri-iodothyronine (T3). We used beeswax pellets loaded with an amount of T3 based on in vitro experiments showing stable T3 release (∼5 nmol l−1) for 32 days. Upon stereotactic bilateral implantation, T3 concentrations were increased 90-fold in the PVN region and 50-fold in the VMH region after placing T3-containing pellets in the rat PVN or VMH for 28 days respectively. Increased local T3 concentrations were reflected by selectively increased mRNA expression of the T3-responsive genes Dio3 and Hr in the PVN or in the VMH. After placement of T3-containing pellets in the PVN, Tshb mRNA was significantly decreased in the pituitary, without altered Trh mRNA in the PVN region. Plasma T3 and T4 concentrations decreased without altered plasma TSH. We observed no changes in pituitary Tshb mRNA, plasma TSH, or plasma TH in rats after placement of T3-containing pellets in the VMH. We developed a method to selectively and chronically deliver T3 to specific hypothalamic nuclei. This will enable future studies on the chronic effects of intrahypothalamic T3 on energy metabolism via the PVN or VMH.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3