Changes in the glucose-6-phosphate dehydrogenase activity in granulosa cells during follicular atresia in ewes

Author:

Ortega-Camarillo Clara,González-González Alicia,Vergara-Onofre Marcela,González-Padilla Everardo,Ávalos-Rodríguez Alejandro,Gutiérrez-Rodríguez Margarita E,Arriaga-Pizano Lourdes,Cruz Miguel,Baiza-Gutman Luís Arturo,Díaz-Flores Margarita

Abstract

Apoptosis of granulosa cells during follicular atresia is preceded by oxidative stress, partly due to a drop in the antioxidant glutathione (GSH). Under oxidative stress, GSH regeneration is dependent on the adequate supply of NADPH by glucose-6-phosphate dehydrogenase (G6PD). In this study, we analyzed the changes of G6PD, GSH, and oxidative stress of granulosa cells and follicular liquid and its association with apoptosis during atresia of small (4–6 mm) and large (>6 mm) sheep antral follicles. G6PD activity was found to be higher in granulosa cells of healthy small rather than large follicles, with similar GSH concentration in both cases. During atresia, increased apoptosis and protein oxidation, as well as a drop in GSH levels, were observed in follicles of both sizes. Furthermore, the activity of G6PD decreased in atretic small follicles, but not in large ones. GSH decreased and protein oxidation increased in follicular fluid. This was dependent on the degree of atresia, whereas the changes in G6PD activity were based on the type of follicle. The higher G6PD activity in the small follicles could be related to granulosa cell proliferation, follicular growth, and a lower sensitivity to oxidative stress when compared with large follicles. The results also indicate that GSH concentration in atretic follicles depends on other factors in addition to G6PD, such asde novosynthesis or activity of other NADPH-producing enzymes. Finally, lower G6PD activity in large follicles indicating a higher susceptibility to oxidative stress associated to apoptosis progression in follicle atresia.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3