Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer

Author:

Savoy Rosalinda M,Chen Liqun,Siddiqui Salma,Melgoza Frank U,Durbin-Johnson Blythe,Drake Christiana,Jathal Maitreyee K,Bose Swagata,Steele Thomas M,Mooso Benjamin A,D'Abronzo Leandro S,Fry William H,Carraway Kermit L,Mudryj Maria,Ghosh Paramita M

Abstract

Prostate cancer (PCa) progression is regulated by the androgen receptor (AR); however, patients undergoing androgen-deprivation therapy (ADT) for disseminated PCa eventually develop castration-resistant PCa (CRPC). Results of previous studies indicated thatAR, a transcription factor, occupies distinct genomic loci in CRPC compared with hormone-naïve PCa; however, the cause of this distinction was unknown. The E3 ubiquitin ligaseNrdp1is a model AR target modulated by androgens in hormone-naïve PCa but not in CRPC. UsingNrdp1, we investigated how AR switches transcription programs during CRPC progression. The proximalNrdp1promoter contains an androgen response element (ARE); we demonstrated AR binding to this ARE in androgen-sensitive PCa. Analysis of hormone-naive human prostatectomy specimens revealed correlation betweenNrdp1and AR expression, supporting AR regulation of NRDP1 levels in androgen-sensitive tissue. However, despite sustained AR levels, AR binding to theNrdp1promoter andNrdp1expression were suppressed in CRPC. Elucidation of the suppression mechanism demonstrated correlation of NRDP1 levels with nuclear localization of the scaffolding protein filamin A (FLNA) which, as we previously showed, is itself repressed following ADT in many CRPC tumors. Restoration of nuclear FLNA in CRPC stimulated AR binding toNrdp1ARE, increased its transcription, and augmented NRDP1 protein expression and responsiveness to ADT, indicating that nuclear FLNA controls AR-mediated androgen-sensitiveNrdp1transcription. Expression of other AR-regulated genes lost in CRPC was also re-established by nuclear FLNA. Thus, our results indicate that nuclear FLNA promotes androgen-dependent AR-regulated transcription in PCa, while loss of nuclear FLNA in CRPC alters the AR-regulated transcription program.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3