Brain-derived neurotrophic factor regulates cell motility in human colon cancer

Author:

Huang Ssu-Ming,Lin Chingju,Lin Hsiao-Yun,Chiu Chien-Ming,Fang Chia-Wei,Liao Kuan-Fu,Chen Dar-Ren,Yeh Wei-Lan

Abstract

Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3