Inducible nitric oxide synthase-derived nitric oxide regulates germinal vesicle breakdown and first polar body emission in the mouse oocyte

Author:

Huo Li-Jun,Liang Cheng-Guang,Yu Ling-Zhu,Zhong Zhi-Sheng,Yang Zeng-Ming,Fan Heng-Yu,Chen Da-Yuan,Sun Qing-Yuan

Abstract

The present study investigated the subcellular localization of inducible nitric oxide synthase (iNOS) during mouse oocyte meiotic maturation and fertilization using confocal microscopy, and further studied the roles of iNOS-derived NO in oocyte maturation by using an iNOS-specific inhibitor aminoguanidine (AG) and iNOS antibody microinjection. In germinal vesicle-stage oocytes, iNOS immunoreactivity was mainly localized in the germinal vesicle. Shortly after germinal vesicle breakdown, the iNOS immunoreactivity accumulated around the condensed chromosomes. At metaphase I and metaphase II, with the organization of chromosomes to the equatorial plate, iNOS immunoreactivity was concentrated around the aligned chromosomes, putatively the position of the metaphase spindle. The accumulation of iNOS immunoreactivity could not be detected at anaphase I and anaphase II. However, at telophase I and telophase II, the staining of iNOS was concentrated in the region between the separating chromosomes/chromatids. Furthermore, the staining of iNOS also accumulated in the male and female pronuclei in fertilized eggs. Germinal vesicle breakdown and the first polar body emission of the oocytes were significantly blocked by the iNOS-specific inhibitor AG in a dose-dependent manner. The germinal vesicle breakdown in oocytes injected with iNOS antibody was also inhibited. We found that the phosphorylation of mitogen-activated protein kinase in oocytes after germinal vesicle breakdown was inhibited by AG treatment. The control oocytes extruded a normal first polar body, while the AG-treated oocytes exhibited an elongated protrusion or no elongated protrusion. The results of confocal microscopy showed that the AG-treated oocytes were arrested at anaphase I–telophase I. Our results suggest that the iNOS-derived NO pathway plays important roles in mouse oocyte meiotic maturation, especially in germinal vesicle breakdown and the anaphase–telophase transition.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3