Retinoic acid regulation of homoeostatic synaptic plasticity and its relationship to cognitive disorders

Author:

Moramarco Francesca1,McCaffery Peter1ORCID

Affiliation:

1. Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK

Abstract

There is increasing interest in retinoic acid (RA) as a regulator of the complex biological processes underlying the cognitive functions performed by the brain. The importance of RA in brain function is underlined by the brain’s high efficiency in converting vitamin A into RA. One crucial action of RA in the brain is dependent on RA receptor α (RARα) transport out of the nucleus, where it no longer regulates transcription but carries out non-genomic functions. RARα, when localised in the cytoplasm, particularly in neuronal dendrites, acts as a translational suppressor. It regulates protein translation as a crucial part of the mechanism maintaining homoeostatic synaptic plasticity, which is characterised by neuronal changes necessary to restore and balance the excitability of neuronal networks after perturbation events. Under normal conditions of neurotransmission, RARα without ligand suppresses the translation of proteins. When neural activity is reduced, RA synthesis is stimulated, and RA signalling via RARα derepresses the translation of proteins and synergistically with the fragile X mental retardation protein allows the synthesis of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that re-establish normal levels of synaptic activity. Homoeostatic synaptic plasticity underlies many cognitive processes, so its impairment due to dysregulation of RA signalling may be involved in neurodevelopmental disorders such as autism, which is also associated with FMRP. A full understanding of RA signalling control of homoeostatic synaptic plasticity may point to treatments.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Reference81 articles.

1. Advances in autism genetics: on the threshold of a new neurobiology;Abrahams,2008

2. Diagnostic and Statistical Manual of Mental Disorders,2013

3. Ribosomes in RNA granules are stalled on mRNA sequences that are consensus sites for FMRP association;Anadolu,2023

4. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity;Aoto,2008

5. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis;Arendt,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3