Estrogen normalizes maternal HFD-induced cardiac hypertrophy in offspring by regulating AT2R

Author:

Chen Fangyuan1,Yu Haili1,Zhang Haichuan1,Zhao Runzhu1,Cao Kaifang1,Liu Yinghua12,Luo Jiandong12,Xue Qin12

Affiliation:

1. 1Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of, Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

2. 2Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Abstract

Our previous study has demonstrated maternal high-fat diet (HFD) caused sex-dependent cardiac hypertrophy in adult male, but not female offspring. The present study tested the hypothesis that estrogen normalizes maternal HFD-induced cardiac hypertrophy by regulating angiotensin II receptor (ATR) expression in adult female offspring. Pregnant rats were divided into the normal diet (ND) and HFD (60% kcal fat) groups. Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Maternal HFD had no effect on left ventricular (LV) wall thickness, cardiac function and molecular markers of cardiac hypertrophy function in sham groups. However, maternal HFD caused cardiac hypertrophy of offspring in OVX groups, which was abrogated by E2 replacement. In addition, maternal HFD had no effect on ERα and ERβ in sham groups. In contrast, HFD significantly decreased ERα, but not ERβ in OVX groups. In sham groups, there was no difference in the cardiac ATR type 1 (AT1R) and ATR type 2 (AT2R) between ND and HFD offspring. HFD significantly increased AT2R, but not AT1R in OVX groups. Furthermore, maternal HFD resulted in decreased glucocorticoid receptors (GRs) binding to the glucocorticoid response elements at the AT2R promoter, which was due to decreased GRs in hearts from OVX offspring. These HFD-induced changes in OVX groups were abrogated by E2 replacement. These results support a key role of estrogen in the sex difference of maternal HFD-induced cardiac hypertrophy in offspring, and suggest that estrogen protects female offspring from cardiac hypertrophy in adulthood by regulating AT2R.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3