Vaspin, a novel adipokine in woman granulosa cells physiology and PCOS pathogenesis?

Author:

Bongrani Alice1,Mellouk Namya1,Ramé Christelle1,Cornuau Marion2,Guerif Fabrice12,Froment Pascal1,Dupont Joëlle1

Affiliation:

1. 1UMR 85 Physiology of Reproduction and Behaviour, National Research Institute for Agriculture, Food and Environment (INRAE) Centre Val de Loire, Nouzilly, France

2. 2Department of Reproductive Medicine and Biology, University Hospital of Tours, Tours, France

Abstract

Vaspin is a novel adipokine mainly expressed in visceral adipose tissue and closely related to obesity and insulin-resistance. Currently, data about its ovarian expression are limited to animal models and its role in human reproduction is largely unexplored. Our study’s aims were then to characterise vaspin expression in the human ovary and to study in vitro its effects on granulosa cells physiology. Secondly, we assessed vaspin and its receptor GRP78 variations in granulosa cells and follicular fluid of a cohort of 112 infertile women undergoing an in vitro fertilisation procedure and allocated to three groups, each including normal-weight and obese subjects: 34 PCOS patients, 33 women with isolated polycystic ovary morphology (ECHO group) and 45 controls. Vaspin and GRP78 expression in the ovary was assessed by immunohistochemistry, RT-qPCR and Western blot. Granulosa cells and follicular fluid were analysed by RT-qPCR and ELISA, respectively. In vitro, granulosa cells metabolism was studied after stimulation with recombinant human vaspin, with and without a siRNA directed against GRP78. Vaspin was highly expressed in the human ovary and concentration-dependently enhanced granulosa cells steroidogenesis, proliferation and viability through GRP78 (P < 0.0001). Vaspin levels in both granulosa cells and follicular fluid were significantly higher in obese women (P < 0.0001) and in the normal-weight ECHO group (P < 0.001), which also had the highest expression rates of GRP78 (P < 0.05). Although further investigation is needed, vaspin appears as a novel modulator of human granulosa cells physiology and possibly plays a role in PCOS pathogenesis, notably protecting from insulin-resistance induced complications.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3